

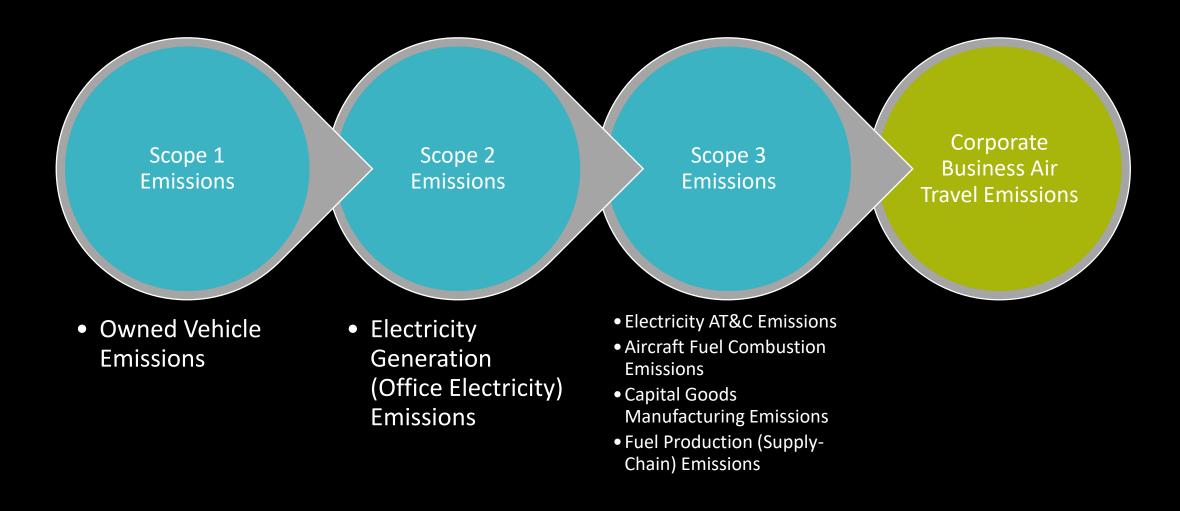
Wipro: Business Travel Carbon Footprint Study

Air Travel, FY 14-15 and FY 15-16

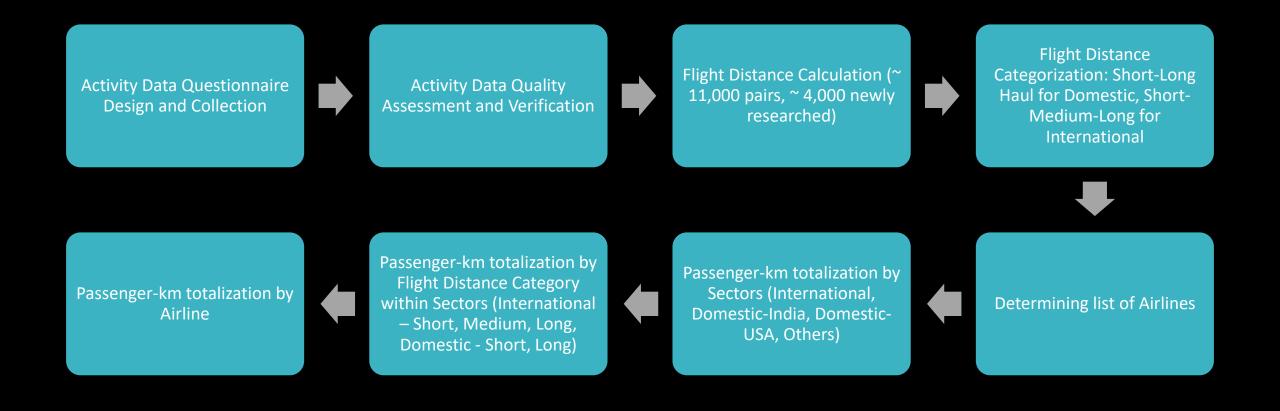
Project Methodology

^{*} defined by 'The Greenhouse Gas Protocol': Corporate Accounting and Reporting Standard, World Resources Institute (WRI) World Business Council for Sustainable Development (WBCSD)

1. Business Goal Definition


Estimate GHG emissions from Wipro's Air Travel activities and evaluate mitigation alternatives as decision support for development of its Corporate GHG Mitigation Roadmap

2. Organizational Boundary Definition


^{*} based on 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol. 2 - Energy, Chapter 3: Mobile Combustion

3. Operational Boundary Definition

^{*} based on 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol. 2 - Energy, Chapter 3: Mobile Combustion

4. Data Collection & 5. Data Analysis

6. Emission Factor Development

LTO and Cruise Mode Emissions (Total) for all aircraft models

Convert to best-case per-passenger emission factors for finite distances for every aircraft model

(using max PAX Capacity and Load-Factor of 1)

Repeat for additional finite distances per model, and replicate for each aircraft model

Repeat for adiditional finited distances for each domestic airline

Calculate per-passenger emissions for finite distance for each airline as sum of weighted LTO & Cruise-mode emissions

(account for weighted-avg. airline passenger capacity, airline-wide passenger load factor, and PAX to Freight Ratio)

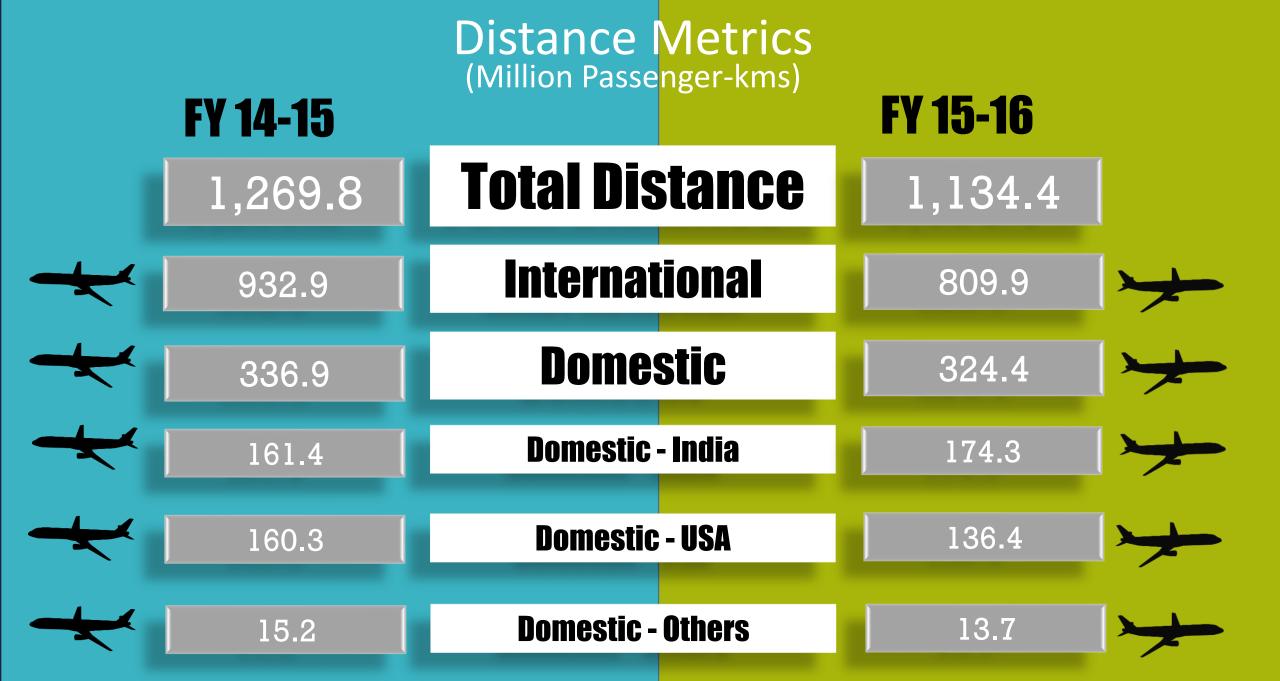
Calculate weighting factor based on % of aircraft model count vs. total fleet count of airline

^{*} based on 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol. 2 - Energy, Chapter 3: Mobile Combustion

Assumptions

- One passenger per booking entry
- Same airline for all legs of multi-stop flights
- GHG mitigation through substitution of Multi-Leg Roundtrip-Flights with Non-Stop Roundtrip-Flights was simple for a roundtrip flight with even-number of legs (eg. 4-leg flight: Mumbai-Dubal-London-Dubai-London) wherein the 'destination' was the middle city (i.e. London). The process of determining the 'destination' for a roundtrip-flight with odd-number of legs (eg. 3-leg flight: Mumbai-Dubai-Geneva-Mumbai) was: identify the city following the 'mid-point' in the even-number sequence (eg. mid-point of 4 city trip would be 2nd-city, the subsequent city would be the 3rd-city in the sequence i.e. Geneva.
- 100% economy class seats
- Employee Count: 1,20,000
- Additional Employee Time per Flight Leg (Pre-Departure, Transit, Post-Arrival Time): 3 hours/flight
- For Airlines wherein fleet composition and operation data were not available, the corresponding
 'average' emission factor for the Sector was applied (eg. use of Avg. International Short Haul Emission
 Factor (kg CO2e/pass-km) for Ravn Alaska Airline's International Short Haul Flights)

Materiality and Exclusions


- Scope 1 Emissions from Owned Vehicle use to support Air Travel activities not considered material to footprint and hence excluded
- Scope 2 Emissions attributable to Office Electricity Use (for Air Travel Management Operations) not considered material to footprint and hence excluded
- Scope 3 Emissions attributable to AT&C Losses resulting from Office Electricity Use (for Air Travel Management Operations) not considered material to footprint and hence excluded
- Scope 3 Emissions from Train Travel in the USA excluded
- Flights shorter than 100 kms excluded (considered to be data error)
- Flights costing less than INR 200 excluded (considered to be data error)

Definitions

Flight Distance Category	Distance Range (km)
International – Short Haul	< 2,000
International – Medium Haul	> 2,000 to < 5,000
International – Long Haul	> 5,000
Domestic – Short Haul	< 500
Domestic – Long Haul	> 500

Data Analysis:

Know your Air Travel Metrics

Flight Metrics (Nos. of Flights)

FY 14-15

4,98,32

7

2,02,122

2,96,205

1,59,166

1,13,763

23,276

Total Flights

International

Domestic

Domestic - India

Domestic - USA

Domestic - Others

FY 15-16

4,68,67

1,79,201

1,73,147

96,636

19,691

5 Longest International Flights

km Heathrow, Auckland, New 18,364.2 **United Kingdom** Zealand London, United Auckland, New 18,336.8 Kingdom Zealand Bonaire, Singapore, 18,287.5 Netherlands Singapore Antilles 18177.93 Sydney, Australia Lisbon, Portugal Perth, Australia 18138.05 Toronto, Canada

5 Shortest International Flights

km Tallinn, USSR Helsinki, Finland 101.4 Geneva, 106.6 Lyon, France Switzerland Cotonou, Benin Lagos, Nigeria 107.2 Porto, Portugal Vego, Spain 109.9

128.5

Hongkong

Guangzhou,

China

5 Longest Domestic-India Flights

km

Delhi, India

2,483.5

Port Blair, India

Bangalore, India

2,418.7

Dibrugarh, India

Amritsar, India

2,408.6

Kochi, India

Kochi, India

2,385.4

Guwahati, India

Dibrugarh, India

2,368.7

Pune, India

5 Shortest Domestic-India Flights

km

Baroda, India

102.3

Ahmedabad, India

Bombay, India

124.1

Pune, India

Calicut, India

131.7

Coimbatore, India

Jammu, India

142.6

Srinagar, India

Dehradun, Uttarakhand

143.2

Chandigarh, India

FY 14-15

FY 15-16

~4 Flights

Flights Per Employee

~4 Flights

10.6 Thousand Pax - km

Distance Per Employee

9.45 Thousand Pax - km

1.51 Million Hours

Time Spent in Air

1.35 Million Hours

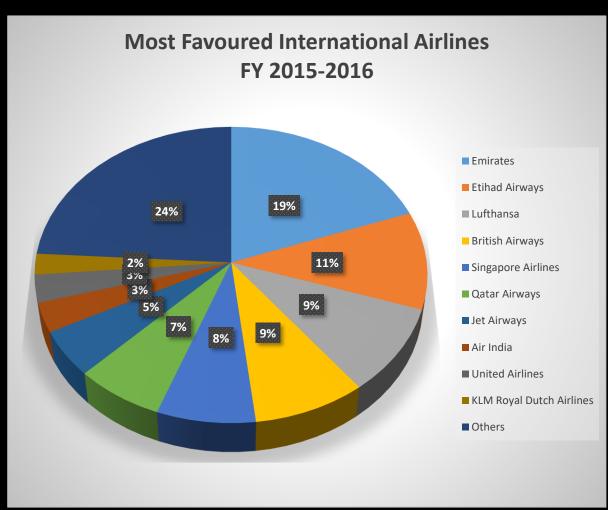
3.01 Million Hours

2.76 Million Hours

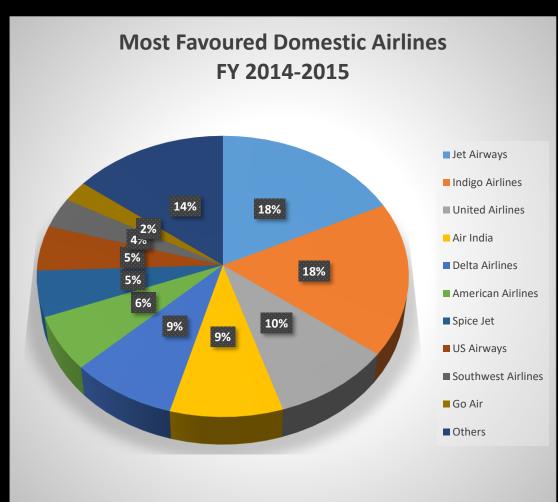
12.6 Hours

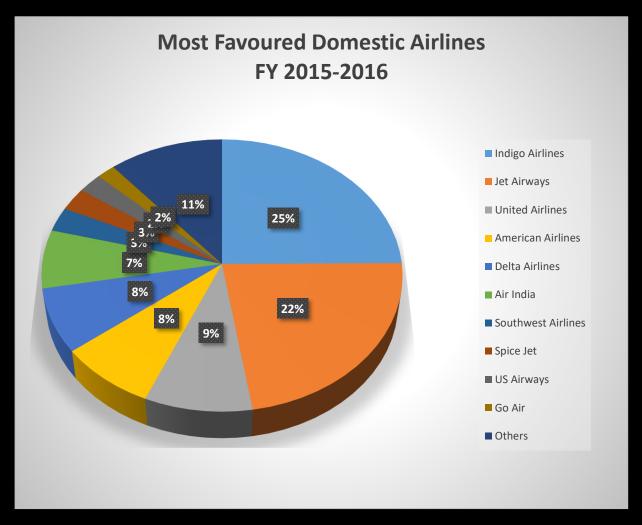
Air time Per Employee

11.3 Hours


23.0 Hours

25.1 Hours


*including pre-flight, post-flight, and transit time


Most Favoured International Airlines (flight count-based)

Most Favoured Domestic Airlines (flight count-based)

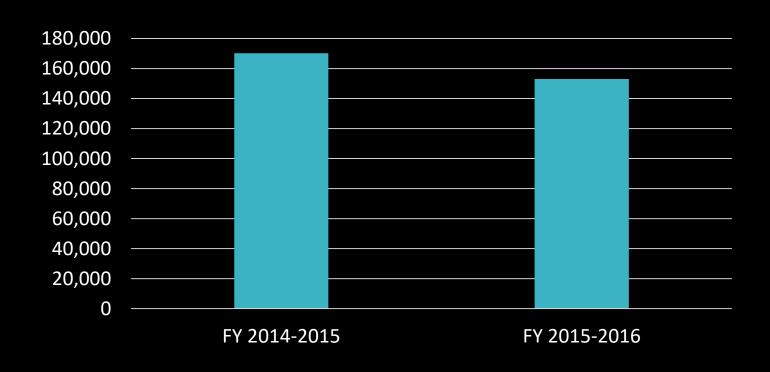
Data Analysis:

Know your Baseline GHG Emissions

Corporate Business Travel (Air Travel) Emissions ('000 Tonnes CO2e)

FY 14-15

Category	Scope 3 – Aircraft Fuel Combustion	Scope 3 – Fuel Supply Chain	Scope 3 – Aircraft Manufacturing	Total
International Air Travel	100.7	15.0	7.38	123.2
Domestic Air Travel	38.9	5.95	2.12	46.9
Total	139.6	21.0	9.51	170.1

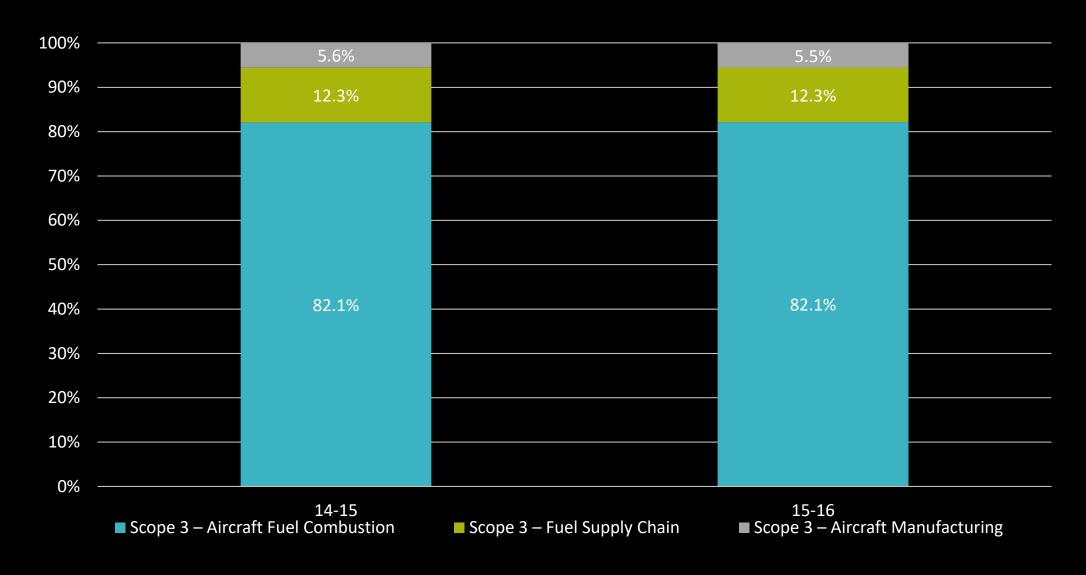

Corporate Business Travel (Air Travel) Emissions ('000 Tonnes CO2e)

FY 15-16

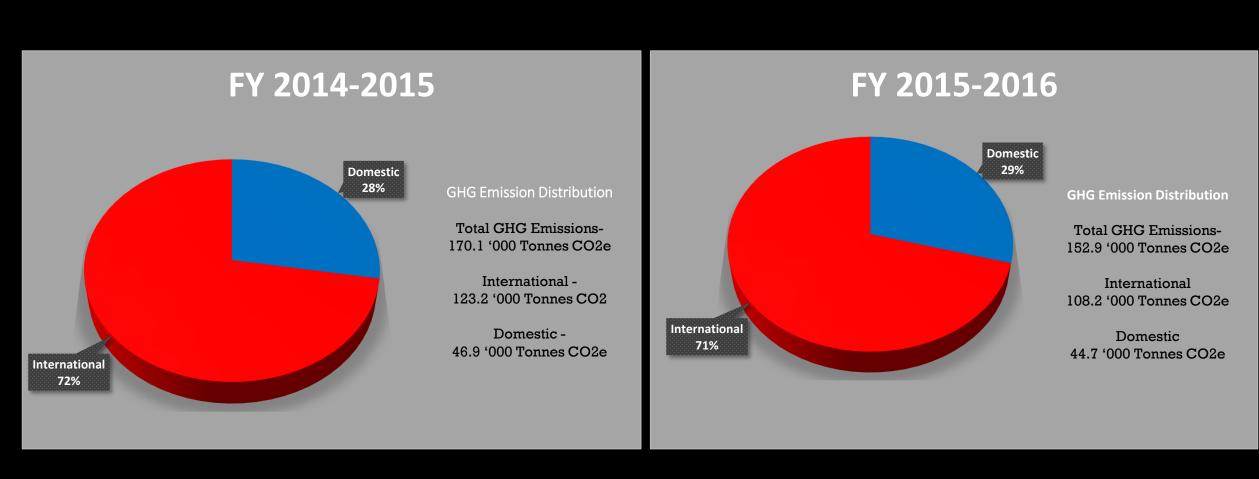
Category	Scope 3 – Aircraft Fuel Combustion	Scope 3 – Fuel Supply Chain	Scope 3 – Aircraft Manufacturing	Total
International Air Travel	88.6	13.1	6.4	108.2
Domestic Air Travel	37.0	5.7	2.0	44.7
Total	125.6	18.8	8.4	152.9

Air Travel Emission Trend – FY 14-15 vs. FY 15-16

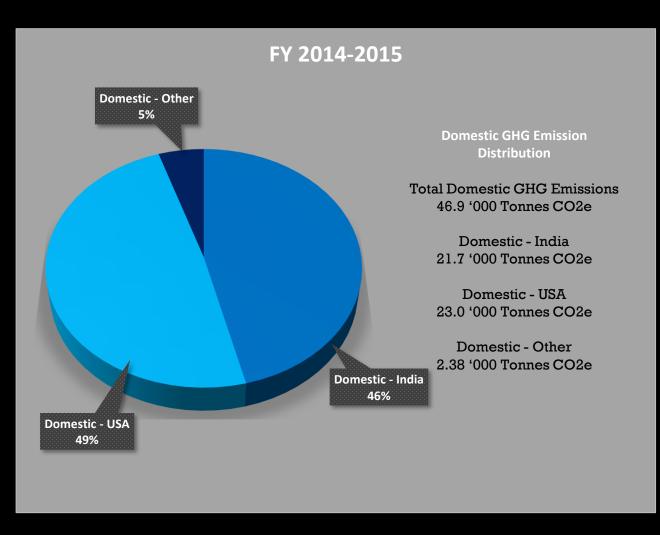
Air Travel GHG Emissions: FY 14-15 and FY 15-16

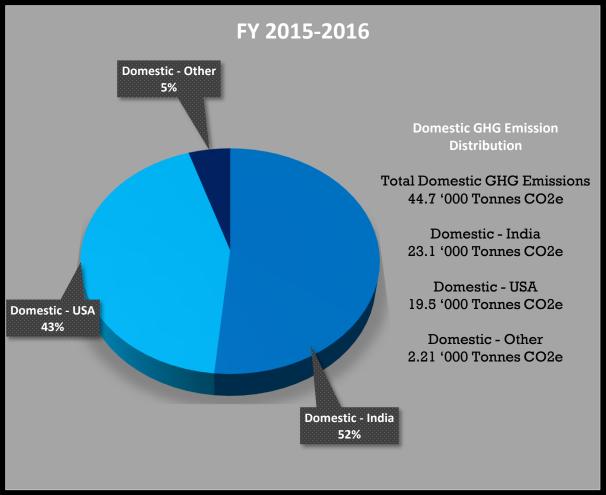


Air Travel Emission Trend


GHG Emissions FY 2014 - 2015 - 170.1 Thousand tonne CO2e

GHG Emissions FY 2015-2016 - 152.9 Thousand tonne CO2e


Activity-Wise Air Travel Emission Distribution



International vs. Domestic Air Travel Emission Distribution

Domestic Air Travel Emission Distribution

FY 15-16

GHG Emission Benchmarks

1.42 Tonnes CO2e

CO₂

Emission Per Employee

1.28 Tonnes CO2e

341.6 kg CO2e

CO₂

Emission Per Flight

326.5 kg CO2e

21.3 g CO2e

₹ co₂

Emission Per Rupee

20.4 g CO2e

Million Litres

53.8

CO₂

Litres of fuel burnt

48.4 Million Litres

TCS

GHG Emission Benchmarks - Peers

76,557 Tonnes CO2e

Total Air Travel Emissions

110,809
Tonnes CO2e

0.39 Tonnes

CO₂

Emission Per Employee

0.36 Tonnes

5

CO₂

Emission Per Flight

326.5 kg CO2e

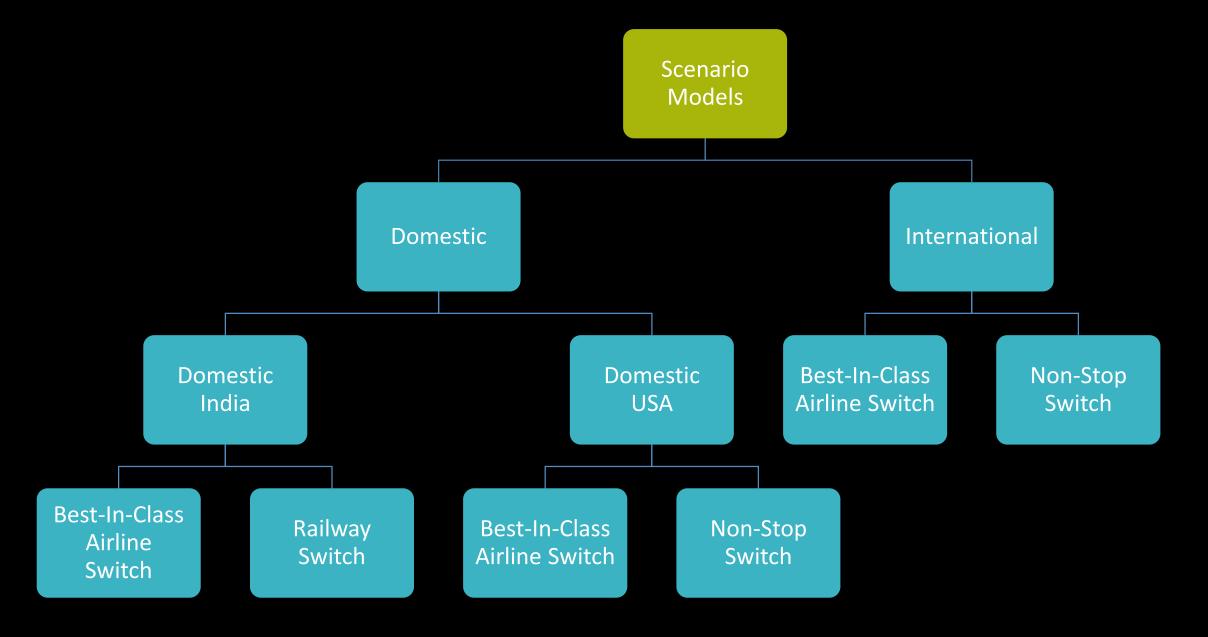
Airline Emission Factor Benchmarks – International Airlines (kg CO2e/pass-km)

Benchmark	International	International – Short Haul International – Medium Haul		International – Long Haul		
Lowest EF - 1	Ryanair	0.0748	Ryanair	0.0681	Rwand Air	0.0608
Lowest EF - 2	Norwegian Air Shuttle	0.0830	Rwand Air	0.0685	Ryanair	0.0657
Lowest EF - 3	Spirit Airlines	0.0895	Alaska Airlines	0.0755	Alaska Airlines	0.0691
Highest EF - 1	Hanh Airlines	0.4413	Regional Express	0.2707	Regional Express	0.2684
Highest EF - 2	Regional Express Airlines	0.2799	New England Airlines	0.2811	New England Airlines	0.2801
Highest EF - 3	Porter Airlines	0.2797	Hahn Airlines	0.3828	Hahn Airlines	0.3636
Average EF	0.1292		0.1116		0.1058	

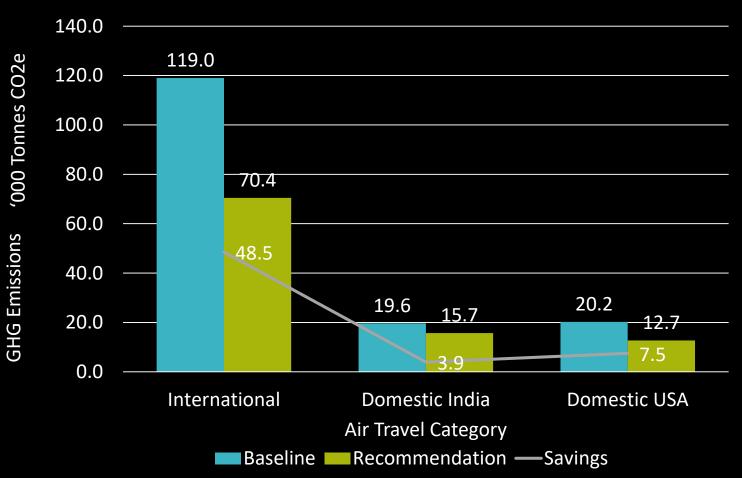
Airline Emission Factor Benchmarks — Popular International Airlines (kg CO2e/pass-km)

Benchmark	International – Medium Haul			
EF Rank - 1	United Airlines	0.0779		
EF Rank - 2	Jet Airways	0.0960		
EF Rank - 3	Lufthansa	0.0977		
EF Rank - 4	KLM	0.1048		
EF Rank - 5	Qatar Airways	0.1116		
EF Rank - 6	Singapore Airlines	0.1133		
EF Rank - 7	British Airways	0.1144		
EF Rank - 8	Air India	0.1159		
EF Rank - 9	Emirates	0.1240		
EF Rank - 10	Etihad	0.1253		

Airline Emission Factor Benchmarks – Domestic (India) Airlines (kg CO2e/pass-km)


Benchmark	Domestic – India Short Haul		Domestic India – Long Haul	
Lowest EF - 1	Indigo Airlines	0.1289	Spice Jet	0.0861
Lowest EF - 2	GO Air	0.1304	Indigo Airlines	0.0867
Lowest EF - 3	Air Asia India	0.1378	GO Air	0.0877
Highest EF - 1	Air India	0.1996	Air India	0.1329
Highest EF - 2	Jet Airways	0.1806	Jet Airways	0.1198
Highest EF - 3	Spice Jet	0.1670	Vistara	0.1105
Average EF	0.1582		0.1031	

Airline Emission Factor Benchmarks – Domestic (USA) Airlines (kg CO2e/pass-km)


Benchmark	Domestic – USA Short Haul		Domestic USA – Long Haul	
Lowest EF - 1	Spirit Airlines	0.1299	Spirit Airlines	0.0860
Lowest EF - 2	West Jet	0.1462	West Jet	0.0931
Lowest EF - 3	Jet Blue	0.1512	Alaska Airlines	0.0955
Highest EF - 1	Porter Airlines	0.4370	Porter Airlines	0.2695
Highest EF - 2	Air Tran Airways	0.2649	Air Tran Airways	0.1779
Highest EF - 3	American Airlines	0.2100	Silver Airways	0.1619
Average EF	0.1832		0.1226	

Scenario Modelling:

Know your Mitigation Options

FY 14- 15
Best In Class Switch

Best In Class Switch

International

Baseline - 119.0 Thousand tonne CO2e **Recommendation** - 70.4 Thousand tonne CO2e

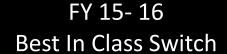
Savings - 48.5 Thousand tonne CO2e

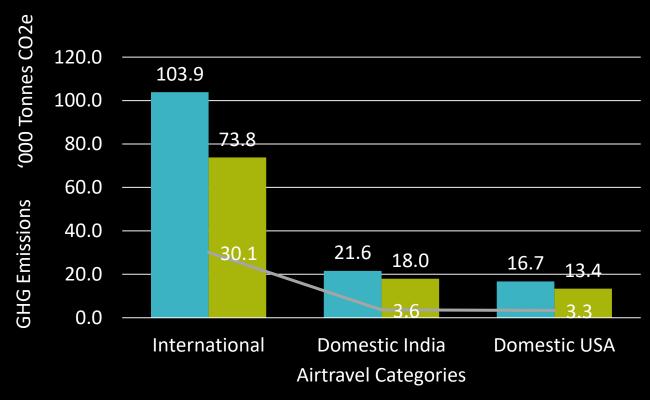
Saving % -41%

Domestic India

Baseline - 19.6 Thousand tonne CO2e **Recommendation** - 15.7 Thousand tonne CO2e

Savings - 3.9 Thousand tonne CO2e


Saving % -37%


Domestic USA

Baseline - 20.2Thousand tonne CO2e **Recommendation** - 12.7 Thousand tonne CO2e

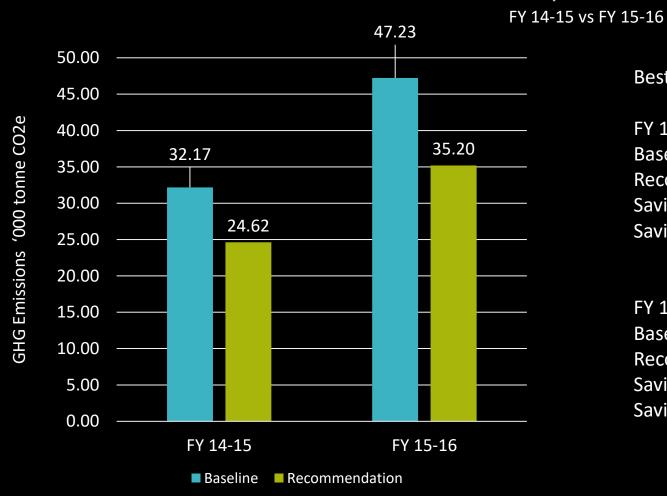
Savings - 7.5 Thousand tonne CO2e

Saving % - 20%

Best In Class Switch

International

Baseline - 103.8 Thousand tonne CO2e **Recommendation** - 73.8 Thousand tonne CO2e **Savings** - 30.0 Thousand tonne CO2e **Saving %** - 29%

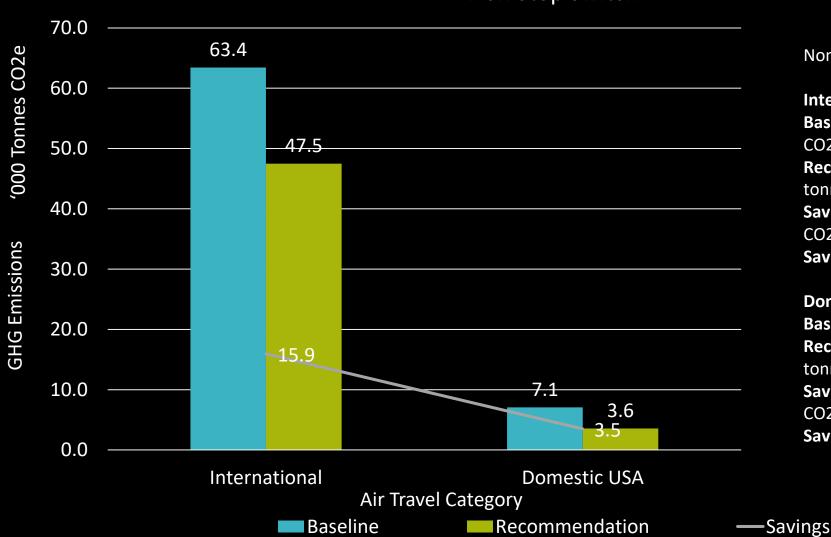

Domestic India

Baseline - 21.6 Thousand tonne CO2e **Recommendation** - 18.0 Thousand tonne CO2e **Savings** - 3.6 Thousand tonne CO2e **Saving %** - 17%

Domestic USA

Baseline - 16.7Thousand tonne CO2e **Recommendation** - 13.4 Thousand tonne CO2e **Savings** - 3.3 Thousand tonne CO2e **Saving %** - 20%

Best In Class Switch for Top GHG Emission contributing sectors



Best In Class Switch for Top GHG Emission contributing sectors

FY 14 -15
Baseline – 32.17 Thousand tonne CO2e
Recommendation – 24.62 Thousand tonne CO2e
Savings – 7.54 Thousand tonne CO2e
Savings % - 23%

FY 15-16
Baseline – 47.23 Thousand tonne CO2e
Recommendation – 35.20 Thousand tonne CO2e
Savings – 12.04 Thousand tonne CO2e
Savings % - 25%

Non Stop Switch

International

Baseline - 63.4 Thousand tonne

CO2e

Recommendation - 47.4 Thousand

tonne CO2e

Savings - 15.9 Thousand tonne

CO2e

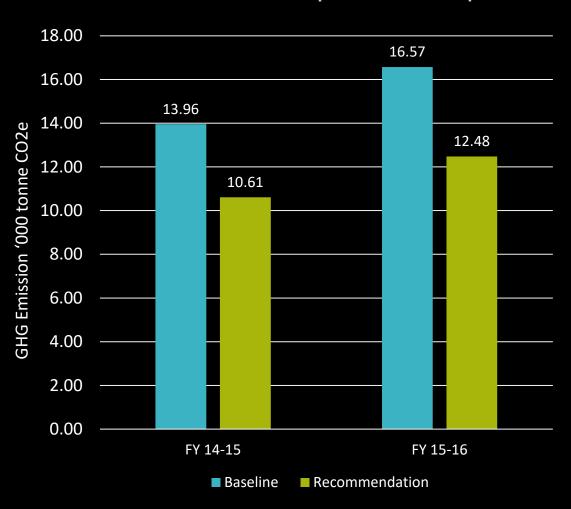
Saving % -25%

Domestic USA

Baseline - 7.0 Thousand tonne CO2e

Recommendation - 3.6 Thousand

tonne CO2e


Savings - 3.50 Thousand tonne

CO2e

Saving % -25%

Non Stop Switch for Top GHG Emission contributing sectors

Non Stop Switch for Top GHG Emission contributing sectors

FY 14-15
Baseline – 13.96 Thousand tonne CO2e
Recommendation – 10.61 Thousand tonne CO2e
Savings – 3.34 Thousand tonne CO2e
Savings % - 24%

FY 15-16
Baseline – 16.57 Thousand tonne CO2e
Recommendation – 12.48 Thousand tonne CO2e
Savings – 4.09 Thousand tonne CO2e
Savings % - 25%

Key Recommendations

- Give priority to Best-In-Class Airlines:
 - For International Travel: United Airlines, Jet Airways, Lufthansa
 - For Domestic Travel in India: Indigo, Go Air, Spicejet
- Switch journeys of < 200 km to shared vehicular transport such as express busses, express trains and car-pooled intercity-cabs
- Switch to Rajdhani, Duronto, Shatabdi, Amtrak Train Travel for Routes between key-city pairs served by these high-speed trains
 - For India-Travel: Mumbai-Ahmedabad, Mumbai-Baroda, Kolkata-Ranchi, Kolkata-Puri, Jaipur-Delhi, Bangalore-Chennai, Mysore-Chennai, Chennai-Coimbatore, Pune-Hyderabad, New Delhi-Chandigarh, New Delhi-Amritsar
 - For US-Travel: New York City-Boston, New York City-Philadelphia, Houston-Dallas, New York City-Washington DC
- Consider time savings from avoided air travel (with tele-video conferencing as a substitute) to be eligible for partial consideration as vacation-time for employees.