The cBalance Blog

Wipro’s Air Travel Emissions

cBalance has been engaging with Wipro, an Indian Information Technology Services Corporation, to estimate their GHG emissions from air travel since 2015.
The objective of the project has been to estimate GHG emissions from air travel, analyze Wipro’s flying patterns, estimate possible reductions in GHG emissions and recommend strategies to reduce GHG emissions.

The analysis was adhered to GHG Protocol’s Corporate Standard, accompanied by IPCC Guidelines 2006 to calculate airline specific emission factors (insert footnote)

Following the equation:

GHG Emissions = Activity Data  x  Emission Factor

Here, the Activity Data was the distance between Airport A to Airport B, calculated using great circle equation.
Emission factor was given in terms of kg CO2e / pax-km for each airline, distinguished based on whether the flight was International or Domestic and whether the flight was short, medium or long haul (this was determined based on the distance).

View detailed methodology here.

FY 2014-2015 & FY 2015-2016

For FY 2014-2015 estimated GHG emissions were 170.1 thousand tonnes CO2e, with 1,269.8 million pax-km traveled across 5.0 lac flights
For FY 2015-2016 estimated GHG emissions were 152.9 thousand tonnes CO2e, with 1,134.4 million pax-km traveled across 4.7 lac flights

During these two cycle of analysis, other than estimating the GHG emissions from air travel, the major emphasis was on quantifying reduction potential and study reduction strategies. This was achieved by modeling two scenarios :
Best-In-Class Switch :
The goal of this scenario was to determine, for a given flight, the best airline in terms of emission factor ranking for its specified route. This helped us and Wipro quantify reduction potential just by switching over to a more efficient airline.
The estimated GHG emissions reduction from Best-In-Class switch for FY 2014-2015 were 59.9 thousand tonnes CO2e and for FY 2015-2016 were 36.9 thousand tonnes CO2e
Multi-stop to Non-stop Switch :
The goal of this scenario was to determine possible reductions in GHG emissions switching from a multi-stop flight to a non-stop flight.
The estimated GHG emissions reduction from Multi-stop to Non-stop switch for FY 2014-2015 were 19.4 thousand tonnes CO2e and for FY 2015-2016 were 11.7 thousand tonnes CO2e

In total, 79.3 thousand tonnes CO2e and 48.6 thousand tonnes CO2e reductions were estimated respectively for FY 2014-2015 and FY 2015-2016

View emission comparison report between FY 2014-2015 & FY 2015-2016 here.

A white paper titled Reducing Air Travel Emissions can be read here, where we have ranked airlines based on their GHG Emission Factor.

FY 2016-2017 & FY 2017-2018

For FY 2016-2017 estimated GHG emissions were 130.2 thousand tonnes CO2e, with 923.7 million pax-km traveled across 2.1 lac flights
For FY 2017-2018 estimated GHG emissions were 116.5 thousand tonnes CO2e, with 836.8 million pax-km traveled across 1.9 lac flights

Since the recommendations of flying the best-in-class airline, flying non-stop over multi-stop and choosing to travel via railways and/or use video calling services were already implemented, during these cycle only emission estimation was conducted on the business unit level.
For future development, the goal is to implement emissions and a financial budgeting system with respect to flying on a business unit level with the idea that it would create responsible air travel amongst employees.

Details on the Business Units wise emissions for FY 2016-2017 can be viewed here.

Furthermore, click here to view a comparison between Economy vs Business Class emissions between FY 2016-2017 and FY 2017-2018

Filed under: , , , , , , , , , , , , ,
​July 3 Milkesh Read Comments

IPL 2010 Season Carbon Footprint Control Project

Eliminate Carbon Emissions (ECE) Pvt. Ltd was contracted by the IPL Management upon the recommendation of the United Nations Environment Program (UNEP) to calculate the IPL’s annual carbon footprint (i.e. an inventory of the total greenhouse gas emissions – GHGs – that contribute to climate change, resulting from direct and indirect resource consumption through DLF IPL 2010’s annual operations).

The total carbon footprint of DLF IPL 2010 was estimated to be 42,264 tons CO2e. DLF IPL 2010’s Carbon Footprint can be thought of as requiring 169,055 trees to ‘neutralise’ its impact on climate change over a period of 20 years. This equates to approximately 2,818 trees per match.

The following activities comprise its carbon Footprint, in order of decreasing magnitude: travel and logistics (18,073 tons CO2e – 42.8%), stadium construction (9,932 tons CO2e – 23.5%), luxury hotel accommodation (9,927 tons CO2e – 23.5%) , food, beverage, and waste (1,201 tons CO2e – 2.8%) and electricity (996 tons CO2e – 2.4%). These results are displayed in the chart below:

IPL, Carbon Footprint, GHG emissions,

Relative stakeholder contributions to the DLF IPL 2010 Carbon Footprint are: IPL/IMG Operations (9,861 tons CO2e – 23%), state association operations (12,861 tons CO2e – 30%), franchise operations (5,243 tons CO2e – 12%), spectator activities (14,300 tons CO2e – 35%). The following chart displays the results:

Total Carbon Footprint Summary - Stakeholder Groups Breakdown

A majority of the carbon footprint of DLF IPL 2010 is the consequence of activities related to its contractors, while only 23% of the footprint is a direct consequence of direct IPL/IMG managed operations. It is imperative that footprint mitigation strategies account for this aspect of footprint distribution.

Spectators are the most significant stakeholders in terms of contribution to total carbon footprint. Private vehicular travel is the single largest contributing factor – responsible for 6,517 tons CO2e (45%) of the stadium spectator carbon footprint. It is imperative to address this disproportionately heavy reliance on private transport consumed for spectator travel when addressing the overall IPL carbon footprint.

TV viewership-related carbon footprint for DLF IPL 2010 was 358,039 tons CO2e and far outweighed the contributions of any other stakeholder or activity considered within the IPL carbon footprint boundary. This component of carbon footprint, and its root cause–large quantity of consumption of electricity through TV sets–needs to be addressed with greater emphasis on its analysis and mitigation through innovative strategies and interventions in future editions of the IPL.

The impact of stadium construction, one of the primary activities contributing significantly to the IPL footprint, needs to be mitigated by intervening and exploiting opportunities to infuse low-carbon and green architecture and construction practices as the cornerstone of future stadium construction activities at proposed stadiums that are intended for use by the IPL.

Best practice examples for a majority of stakeholder functions within the IPL have been identified and quantified and their initial feasibility assessed. Best practice benchmark replication across the IPL must be pursued as a potent and actionable strategy for optimizing the carbon footprint of the IPL prior to any resource and capital-intensive carbon footprint minimisation strategies.

All interventions must be accompanied by effective communication to all internal and external stakeholders. They must also be in consonance with a well thought-out greening strategy that aims not just at a carbon neutral IPL but sets itself the loftier target of an IPL that is a net carbon sink (an indicative road map is presented in Appendix H of the original report).

Best practice incentivisation through formal programs and its incorporation into contractual negotiations processes with all vendors, contractors and other relevant stakeholders is ascertained to be the most feasible ‘first step’ on the pathway to drastically reducing the carbon footprint of IPL in the forthcoming seasons. Central IPL support and nurturing of competitive franchise behavior through formal recognition of the ‘lowest carbon footprint’ or ‘greenest’ franchise is one illustrative example that may be expanded to envelop all aspects of IPL operations in future editions.

The carbon footprint determined as part of this project phase does not account for the entire life-cycle of the resources consumed and their comprehensive impact on Climate Change and ecology. Accounting for resource acquisition, processing, and disposal impacts could magnify the current extent manifold. A life-cycle analysis (LCA) of all primary resources consumed is essential to ascertain a more comprehensive carbon footprint that tends towards the true climate change impact of IPL. It is recommended that IPL 2011 be assessed on a LCA basis and that preparatory work for an LCA study be commissioned as part of the next phase of the project. The activity boundaries are outlined in the following table:

IPL Activity Boundary Summary

IPL Activity Boundary Summary - 2

It is recommended that the IPL commission ECE to commence a comprehensive carbon footprint minimization analysis as part of a long-term ‘greening program’ (in fulfillment of its MOU with the UNEP’s Sports and Environment Unit) to identify means and alternatives for optimising and minimising its resource intensiveness.

Prior to minimising and offsetting the impact of future IPLs, it is recommended that the IPL commit to neutralise the impact of, as minimum, the four knock-out phase matches of DLF IPL 2010 (estimated to be 3,148 tons). While multiple options for offsetting are available in the conventional Carbon Offset market, the alternatives that result in equitable distribution of benefits to the grassroots stakeholder communities who are imperative to the project’s implementation are preferred as a more potent agent of social and environmental transformation.


The original report can be read here.

Filed under: , , , , , , , , , , , , ,
​April 27 Vivek Gilani Read Comments

Recycle Guru: Carbon Savings Achieved by Recycling

Recycle Guru is an online platform helping citizens recycle their waste by enabling the informal recycling sector. It promotes the more sustainable use of resources to make communities healthier and cleaner and seeks to instill greater dignity in the recycling profession as well as into the perception of citizens who rely upon their services. Recycle Guru initiates the recycling process by collecting paper, plastic, metal, and glass wastes from households in Bangalore.


The motive of this project was to create a tool to estimate the Energy and GHG Emissions (or Carbon Footprint) conservation benefits of recycling versus the business-as-usual option for municipal waste management in India: landfilling. Achieved Energy saving is contextualized in terms of equivalent hour of usage of CFLs (compact fluorescent lamps), ceiling fans, laptop, washing machine, LCD TV, and the equivalent carbon sequestration capacity of trees.


Paper waste is categorized into following categories: paper sheets, newspaper inserts, newsprint, cardboard, and magazines. The Recycle Guru team observed the percentile contribution of each waste type as the following:

Paper sheets – 95%

Newspaper Inserts – 5%

Cardboard – 60%

Magazines – 40%

Life cycle emission (implies manufacturing from Virgin material, 0% recycled material) of each subcategory mentioned above is as follows:

Life cycle emission of Virgin and Recycled Paper

Using the first order decay method, the emissions from disposal is estimated to be 1.725 kg CO2e/kg of waste. The total emissions saved from recycling is calculated by subtracting the life cycle emissions of the recycled material from the life cycle emissions of the virgin material and then adding the landfilling emissions. The results are displayed in the following table:

Paper: Total Avoided Emission (Per Kg of paper)


Plastic waste consists of the following three categories: high value plastic (high density polyethylene), PET bottles (polyethylene terephthalate), low value plastic (low density polyethylene). The life cycle emissions from manufacturing for each subcategory are displayed in the table below.

Life cycle emission of virgin and recycled plastic

Since Degradable Organic Carbon in plastic is almost negligible, methane generation from its disposal in landfills is considered to be Zero. To calculate the avoided emissions from recycling, the same formula as that for paper was used. The results are displayed in the following table:

Plastic: total avoided emission (per kg of plastic)



Metal waste only contains one category comprising both aluminum and steel. As per the pattern observed so far, percentile contribution of aluminum and steel in metal waste is found to be 75% and 25%, respectively. The life cycle emissions (implies manufacturing from Virgin material, 0% recycled material) of each subcategory mentioned above is as follows:

Life cycle emission of virgin and recycled metal


Since degradable organic carbon in metal is almost negligible, methane generation from its disposal in landfills is considered to be zero. Emission savings for each category is estimated using the same equation as paper and plastic with the results displayed below.

Metal: total avoided emission (per kg of metal)



Glass waste is categorized into the following categories: beer bottles (brand: Kingfisher), container glass, and generic glass. As observed so far by Recycle Guru team, there were many instances when beer bottles were counted in pieces instead of kilogram. Hence, carbon saving from beer bottles is estimated based on number of pieces taken for recycling. Kingfisher beer bottles (made up of glass) mostly come in 650ml and 330ml. These two
major categories are considered in modeling the carbon saving from piece of each type. Life cycle emission (implies manufacturing from virgin material, 0% recycled material) of each subcategory mentioned above is as follows:

Life cycle emission of Virgin Glass, Life cycle emission of Virgin Beer Bottle Glass

Since degradable organic carbon in metal is almost negligible, methane generation from its disposal in landfills is considered to be zero. Emission savings for each category is estimated using the same equation as paper, plastic, and metal and the results are displayed in the following two tables.

Glass: Total avoided emission (per kg of Glass), Beer Bottle: Total avoided emission (per piece of beer bottle)

As discussed above, the energy saving achieved is expressed in terms of following contexts: CFLs (compact fluorescent lamps), ceiling fans, laptop, washing machine, LCD TV, and the equivalent carbon sequestration capacity of trees. Electricity emission factor (including AT&T Loss) for Bengaluru city is 1.27 kgCO2e/kwh generated. The following table displays the results:

Energy consumption of contexts (appliances)

To find about the assumptions taken and the equations used, the original report can be read here.

Filed under: , , , , , , , , , , , , , , , ,
​January 12 Vivek Gilani Read Comments

cBalance and the Orange County Foundation’s Royal Orange County Project


The Orange County Foundation is a group of individuals who have experience in eco-friendly architecture and civil construction, and focus on sustainable urban development. The foundation has developed a self-sufficient green housing project at Pashan, Pune–the first of its kind–and is developing another green housing project, ‘Royal Orange County’ (ROC), at Rahatani Pune. This project involves eight multi-storied buildings, consisting a total of 353 residential flats. The ROC has adopted a number of sustainable and environment-friendly options, such as eco friendly architectural design buildings, renewable energy, waste management, wastewater management and low-carbon embodied construction and building materials.

Project Objectives:

  1. Internal capacity building and skill development for the Orange County Foundation team to calculate the carbon footprint of their construction projects
  2. License of authenticated database for India specific emission factors related to construction and building materials, electricity & energy, mobility, AFLOU, waste, and wastewater to map the environmental performance and sustainability impact of the Orange County Foundation’s projects
  3. Life-cycle process mapping of the ROC construction to develop a toolkit for carbon ERP integration into their system
  4. Carbon Footprinting of the design and construction phase of the ROC project

cBalance’s Roles:

  1. Annual Enterprise-Use License for cBalance Carbon Emission Factor Database (CEFD) – cBalance authorized yearly subscription of the CEFD tool to the Orange County Foundation to map the carbon footprint of projects using India-specific emission factors of construction and building materials, energy, mobility, AFLOU, waste and wastewater.
  2. Training to Orange County Foundation Team for Assessment of Carbon Footprint – cBalance team provided 16 hours extensive training to the Orange County Foundation team on the topic of carbon footprinting, life-cycle of a construction project and introduction to common carbon metrics for building operations. In addition, cBalance provided training on the CEFD tool and instructed how the CEFD can be helpful to choose sustainable and low-carbon activity or material alternatives.
  3. Life-cycle Process Mapping and Toolkit Development for Carbon Footprint – The cBalance team visited the construction site and project office of the ROC. Through a site audit and interviews with project officers, cBalance mapped the activities related to the design and construction phase of the ROC. Thereafter, cBalance developed a toolkit that integrated into their existing system for mapping the life-cycle carbon footprint of the ROC and future projects.
  4. Carbon Footprinting of Royal Orange County Residential Housing Project – The cBalance team collected data from the ROC on deforestation, electricity, fuels, and construction and building materials consumption of the construction phase of the ROC and calculated the construction phase carbon footprint using India-specific GHG emission factors. Finally, the cBalance team presented the carbon footprint analysis to the board of the Orange County Foundation.


  1. Subscription to the CEFD and in-person training empowered Orange County Foundation team to:
    • calculate the carbon footprint of their projects using India-specific GHG emission factors
    • assess life-cycle environmental performance and sustainable impact of their projects
    • choose sustainable alternatives over conventional construction and building material
    • compare environmental performances of two different construction projects
    • create a baseline and frame future strategies to reduce the carbon footprint
  2. The Orange County Foundation team calculated the carbon footprint of the ROC construction phase and successfully achieved a 15% reduction in GHG emissions compared with previous projects.

Royal Orange County Project - Constrution Phase GHG Emissions Per Square Feet of Built-up Area

The above graph demonstrates this 15% reduction. Below, the GHG emissions from the construction phase categorized by scope are displayed. As is obvious, almost all of the emissions were Scope 3.

Royal Orange County Project Scope wise GHG Emissions - Constuction Phase


The original report can be read here.

Filed under: , , , , , , , , , , , , , , , ,
​November 24 Vivek Gilani Read Comments

Coal Efficiency and GHG Intensity Enhancement Potential for the Steel Sector in India

This blog post discusses the results of a report written in 2011 by Vivek Gilani and Dr. Amit Garg on the subject of the potential for improving the coal efficiency and GHG intensity of the steel sector in India.



The domestic cola production target for 2011-12 was 554 mt. India added 1660 MW generation capacity in July of 2011 (all thermal power), and Indian plants exceeded their power generation target that month. Additionally, Coal India Ltd (CIL) reported a 64.06% rise in profit after tax (PAT) during the first quarter (April-June) of 2011-12.


India’s coal import in 2011-12 was predicted to be 137.03 mt, with some ports seeing huge increases in the amount of incoming imported coal. The import of coking coal through Paradip port on the eastern coast of India increased from 258,479 in June 2011 to 668,574 in July, an increase of 410,095 tons, or 159%. Imports of PCI coal through Vizag port in July 2011 stood at 113,467 tons, 86,764 tons more than the 26,703 tons imported in June 2011. And the imports of Low Ash Metallurgical (LAM) coke through Paradip port in the month of July 2011 rose sharply to 60,590 tons, compared with 6,000 tons in June 2011


Domestic mining has many environmental impacts, including the issue of land usage. 171 coal mining proposals involving 28,862 hectares of forest land are awaiting forestry clearance as of June 30, 2011. 44 projects of Coal India Ltd (CIL) stuck under Comprehensive Environment Pollution India (CEPI) norms introduced b they MoEF.



Can the most efficient users of coal in India’s steel sector help India:

  • increase its energy independence
  • meet its climate change commitments
  • and even save some forests?



The following chart displays the GHG intensity of production in the Indian steel sector.

GHG Intensity of Production in Sample Steel Companies

As is evident from the results, coking coal is the largest contributor at 40%, with coal being the second largest at 26%. Steam turbines and grid electricity, at 12%, were also significant.

The following table describes the GHG intensity of production in various steel companies throughout the sector.

GHG Intensity of Production in Sample Steel Companies

The following table, on the other hand, depicts the coal efficiency and GHG intensity enhancement of Indian steel companies. In the years 2008-2010, they substantially exceeded their COP15 commitments regarding GHG mitigation.

Coal Efficiency & GHG Intensity Enhancement in Indian Steel CompaniesThe following graph displays the coal savings, GHG intensity reduction, and COP15 commitment opportunities of the steel sector for the same years.

Steel Sector Coal Savings, GHG Intensity Reduction, and COP15 Commitment Opportunities

The following chart displays the abatement potential for India’s steel sector for each measure, along with the necessary assumptions. Potentially, the 2030 projected emissions of 735 million tons of CO2e per year could be reduced to 573 million tons. Energy efficiency processes alone have an abatement potential of 73 million tons, shifting to scrap-based EAF has a potential of 21 million tons, and shifting to gas-based DRI, 17 million tons.

Emissions and abatement potential for India's steel sector by category


  • Energy Efficiency can be improved through improving processes, namely sinter plant heat recovery and coal moisture control. Pulverized coal injection, coke dry quenching, and recovering waste heat also helps optimize energy use.
  • Savings can come from shifting fuel as well, substituting coke used in BF/BOF furnaces with fuel based on biomass (charcoal). Replacing 10% of coke as the primary blast furnace tool can also make a very sizable contribution.
  • Technology chances can have a big impact. One example is direct smelting, which removes the need for coking plants. (There are issues with these technologies that need to be resolved, of course). Another is scrap-based steel making, which uses 1/3 of the energy required by standard blast furnaces. The issue here is that if 10% of the total production moved to this system, 70% of India’s steel would need to be recycled, which would come with an economic cost. Lastly, gas-based direct reduced iron and cogeneration, i.e. recovering gas from the BOF/BF process and cleaning and using it for power generation, can also help to reduce emissions.


Energy independence and the Indian steel sector:

Coking coal prices were $129 a ton in 2009-10 but increased to $225 a ton in the second quarter beginning in July 2010. India has a very high dependency on Australia for coking coal and would need 2.4 billion tonnes of steel/yr by 2030, meaning India would need to import 40% of its coal needs.


Conclusion/way forward:

The best practice gap was achieved by the cement industry in its production from coal, increasing the GHG intensity ration from 13.4 to 15.7 in 3 years. Best practice technology (BPT) replication is achievable using off-the-shelf technologies in India. BPT replication in Steel Industry alone can yield 36 million tons of coal savings and reduce India’s imports drastically as well as help India achieve more than 100% of its GHG emissions commitment to COP15 (reducing the GHG intensity of GDP by 20%-25% by 2020). We are not anti-coal as fuel but, rather, a rational promoter of the roadmap to use India’s and the globe’s diminishing coal supplies more efficiently. The most pressing needs are process optimization technology sharing throughout the steel industry and active promotion and incentivization of efficient users of coal and low-GHG intensity steel on platforms such as coal junction and metal junction.


The original report can be read here.


Filed under: , , , , , , , , , , , , , , ,
​November 3 Vivek Gilani Read Comments